Proving Hybrid Control
Operator Language (HCOL)

Proof Assistant Approach Overview

Vadim Zaliva, Franz Franchetti, Jeremy Johnson, David Padua
CMU, Drexel, UIUC

Funded by the DARPA 120 HACMS Program through award FA8750-12-2-0291

2014-11-05

M OtivatiOn and Funding ;)

“The goal of the HACMS program is to create technology for
the construction of high-assurance cyber-physical systems,
where high assurance is defined to mean functionally correct
and satisfying appropriate safety and security properties.”

1 11\u

SPIRAL
www.spiral.net

Summary: High Assurance Spiral

High Assurance Abstraction

wHA
Location
ure
channel WHA
Velodity

Secure virtual
SENIONS

Untrusted real High Assurance controller
SeNSOrs

Actuator

Code Synthesis

y'*th = (3|13 (x' © viTh)

4

let (y:=var (TArray (TReal, 3)),

xv:=var (TArray (TReal, 6)), h := TReal(1/100),

func ([inparam(xv), outparam(y)],

Yamem 14 ra 21 Aahadnt

HA Spiral Architecture

Verification and Proofs

100
I3=(010 '
00 1 iy
2 T -
Y ened)” = [oojn)oo)” + I
1=0

[0101[1][010[+

Spiral: Translating a Formula into Code

‘ DFT
Input: 8

double

OL Formula: (DFT2® 1) 7§ (I2® ((DF T2 ® I2) T3 (I, ® DFT2) L)) L§

$

y-OL: 3 (S;DFT2Gy) 21: (i (Sk.,ldiag<tk,l) DFTQGZ> 21: (Smdiag(tm> DFTQGk,m>)
=0 k=0 \(=0 _

J m=0

void sub (double *y, double *x) {

c code. double f0, f1, f2, £3, f4, £7, f8, fl0, f11;
° fo = x[0] - x[3];

f1 = x[0] + x[3];
f2 = x[1] - x[2];
£3 = x[1) + x[2]);

f4 = £f1 - £3;
y[o]l = f1 + £3;

y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;

f8 = 0.3826834323650898 * f2;
yl[1] = £7 + f8;

£10 = 0.3826834323650898 * f0;
f11 = (-0.9238795325112867) * f2;
v[3] = fio + f11;

SPIRAL %
www.spiral.net

Deviation Corridor

—>

Planned path

~—
Everything
fine

o ———
Minimum Safety Distance

m Safety constraint from KeYmaera
P,: Position of closest obstacle
p,: Position of robot
Vv,: Longitudinal velocity of robot
A, b, V, ": constants

|pr—polloc > Z—i+\/%“"+ (% + 1) (gez 4o+ V))

m Definition as operator
Dyape: RxR2xR2— Z
(vr, Prypo) = (p(or) < doo(pripo)) With deo(&,7) = [|7 — Flloo

p(z) = aa? + fz +

Modeling Mathematical Objects in HCOL

m Infinity norm
|5 : R — R

(z3)i=0,...n—1 = MaX;=0 . p—1 |Ti]

m Chebyshev distance
d(.,.) : R"xR" - R

(z,y) = [z — ylls

m Vector subtraction
(—)n: R*"xR" - R"
(z,y) —z—y

m Pointwise comparison
(n: R" X R™ - Z35

,,,,,

Modeling Mathematical Objects in HCOL (2)

m Scalar product
<.,.>pn RPxR" =R
n—1
1=0
s Monomial enumerator
(z)p : R = R

m Polynomial evaluation
Plz,(ag,...,an)] : R =R

x+—ag+ a1+ -+ an_lxn_l + anx™

S ————
HCOL Basic Operators

Pointwise,, ;. : R" — R"

(zi)i = fo(zo) © - © fn—1(Tn—1)
Pointwise,, ., ¢ ' R" x R" — R"

(@i Wi)i) = fo(20,40) & -+ & Fr1(Tn—1,Yn—1)

Reduction,, ;. :R" — R

(@i)i = fn—1(@n—1, fn—2(@n—2, fn—3(. .. fo(zo,id())...)
Atomic,y R =R

x+— f(x)
Atomic, yRxR—=R
(z,y) — f(z,y)

Scale, (g p)saoh - R X R — R"

(Oé, (931')7::0,...,71—1) — (0 x)i=0,.. n-1

Concaty,, : R™ x R? — R™1T7

((mz)m (yz)z) = (330, sy In—1>Y0s - - - Jyn—l)

HCOL Rules

m Breakdown rules
dio () = |llse © (—)n

(O)n — Pointwise,, ., (a.b)sacb

150 — Reduction,, «,) max(|al,}b])
< .,. >p— Reduction,, , 4y ,q4p 0 POINtWISE, .) () 1) sab
Plz, (ag,...,an)] =< (ag, ... ,an),.> o(z)n
(z)n — Concaty ,,((1),.) o Scale, (4 p)sab
o (el ([-11n()) o (2")p—1 for n>1
(z')1 — Concaty 1((1),.)

In(.) — Pointwisen aisa

S ——
HCOL Expansion

m HCOL Operator Definition

SafeDisty 45 : R x R? x R? — Zy
2
v v A A
(vr, pr,po) (”PT — Polloc > 2—2 + V% + (z + 1) (552 + e(vr + V)))

s HCOL Breakdown Rule
SafeDisty, 4 pc (., -) = (Pl (a0, a1,a2)1(.) < d3()) ()
With ag=2, a1=Y+e(#41), ao=(4+1)(4e>+eV)
m Fully Expanded HCOL Expression

SafeDistV’M),8 — Atomic(mjy)r_m;qj

o ((Reduction3,(w © POintWise3,mr—>aix

A)—=x+y

o Concaty 2((1),.) o Scaley (5 1) ay

o (e%XQ(.)[—] PointwiseQ,xHx) o Concaty 1((1), .))

x ((Reduction, (5.y)max(lel ul) © POINEWISC 1, (2.4) -y))

A case for formal verification

m Paper: “Finding and Understanding Bugs in C Compilers”
[Yang et al. PLDI 2011]

m Approach: Test C compilers using generated random test
cases.

m 8 C compilers where tested. 325(!) bugs where found in
total. GCC: 79 bugs/25 critical, LLVM 202 bugs.

m CompCert: 10 bug in unverified front-end.

“What sets CompCert C apart from any other production
compiler, is that it is formally verified, using machine-assisted
mathematical proofs, to be exempt from miscompilation
issues. In other words, the executable code it produces is
proved to behave exactly as specified by the semantics of the
source C program.”

Csmith conclusions

“The striking thing about our CompCert results is that the
middle end bugs we found in all other compilers are absent.
As of early 2011, the under-development version of CompCert
is the only compiler we have tested for which Csmith cannot
find wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.”

[Yang et al. PLDI 2011]

Proof Assistants

Automated proof assistants help to automate proof by performing
series of user-defined steps (applications of proof tactics) which
either discharge the proof goal or split it into several sub-goals. Each
step said to modify the proof state and each tactic must be based on
trusted inference methods. Examples of PAs:

m Isabelle
= Coq

s Agda

m ACL2

m PVS

m Lego

= Nuprl

Currently we will consider the two most popular ones: Isabelle and
Coq.

Isabelle

Based on Higher-Order Logic

Written in Standard ML and Scala

New tactics could be written in ML

Rich library of various mathematical proofs

Coq

m Based on Calculus of Inductive Constructions
m Research dates back to 1985.

m Fist release of Coq published in 1989. In active
development since.

s Written in OCaml
s Supports Dependent Types
s Includes DSL (called Ltac to build new tactics).

m Popular in Certified Programs development
community (e.g. CompCert, Princeton, MIT).

s Meets the “de Bruijn criterion”

de Bruijn criterion

Proof assistants satisfy the “de Bruijn criterion” when
they produce proof terms in small kernel languages,
even when they use complicated and extensible
procedures to seek out proofs in the first place. ... To
believe a proof, we can ignore the possibility of bugs
during search and just rely on a (relatively small) proof-
checking kernel that we apply to the result of the
search.[2].

Curry-Howard correspondence

Observed around 1958 by Haskell Curry and William
Howard

Shows the direct relationship between computer programs
and mathematical proofs.

Types €< —2>Propositions
Programs < -2 Proofs

Proving a proposition (a Type) is building an inhabitant of
this type. Checking a proof is type-checking the proof term
In Coq, the user types in tactics, guiding the proof
development system to construct a proof-term. At the end,

this term is type checked and the type is compared with
the original goal.

Coq - Vectors

A vector is a list of size n whose elements belong to a
set A. The recursive parameterized inductive type
definition is as follows:

Inductive t A : nat — Type :=
lnil - t AQ
lcons : YV (h:A) (n:nat), t An —t A(S n).

Informally here we specify that a list could be
constructed using one of two constructors: nil constructs
an empty list (with zero length), while cons pre-pends an
element to existing list increasing its length

Coq - Semirings

A semiring is defined as a data structure:

Structure semiring :=
Semiring {
Asring : Type;
asr_0 : Asring;
asr_1 : Asring;
asr_add : Asring — Asring — Asring;
asr_mul : Asring — Asring — Asring

Coq — Semiring properties

Declaring an instance of this structure to comply to

semi

ring theory the following properties must be

provided (proven):

Record semi_ring_theory : Prop := mk_srt {

SRadd_0_1 : ¥ n, 0 + n == n;
SRadd_comm : Y nm, n+ m==m+ n:
SRadd_assoc : Y nmp, n + (m + p) == (n+ m) + p;
SRmul_1_1 : ¥ n, 1*n == n;

SRmul_0_1 : ¥ n, 0*n == 0;

SRmul_comm : ¥ n m, nxm == mxn:

SRmul_assoc : ¥ n m p, n*(mxp) == (nxm)*p;
SRdistr_| : ¥ n m p, (n + m)*p == nxp + mxp

e
Defining operators in Coqg

Parameter sr : semiring.

Definition SimpleReduction {A B: Type} (f: A->B->B) {n} (id:B) (a: t
A n) : B := fold right £ a id.

Definition SimplePointWise2 {A B C: Type} (f: A->B->C) {n} (a: t A n)
(b: tBn):tCn :=map2 f a b.

Definition ScalarProd {n} (a b: t (Atype sr) n) : Atype sr :=
fold right (asr_add sr) (map2 (asr_mul sr) a b) (asr_©0 sr).

Fixpoint EvalPolynomial {n} (a: t (Atype sr) n) (x:Atype sr) : Atype
sr =
match a with
nil => (asr_© sr)
| cons a@ p a' => (asr_add sr) a® ((asr_mul sr) x (EvalPolynomial
a' x))

end.

e
Proving Scalar Product Breakdown Rule

Now we can try to prove the following HCOL breakdown rule:

< .,. >p— Reduction,, (4.b)—a+b © Pointwise, . (a,b)—ab

Proof in Coq:

Theorem breakdown ScalarProd: forall (n:nat)
(a v: t (Atype sr) n),

ScalarProd a v = ((SimpleReduction (asr_add sr)
(asr_0 sr)) o (SimplePointWise2 (asr_mul sr) a)) v.
Proof.

intros.

unfold compose, SimplePointWise2, SimpleReduction,
ScalarProd.

reflexivity.
Qed.

e ——
The proof walkthrough (step 1/7)

Proof State:
1 subgoals, subgoal 1 (ID 13)

forall (n : nat) (a v : t (Atype sr) n),

ScalarProd a v =

(SimpleReduction (asr_add sr) (asr_© sr) o SimplePointWise2
(asr_mul sr) a) v

Proof progress:

intros.

unfold compose.

unfold SimplePointWise2.
unfold SimpleReduction.
unfold ScalarProd.
reflexivity.

e ——
The proof walkthrough (step 2/7)

Proof State:
1 subgoals, subgoal 1 (ID 16)

n : nat
a : t (Atype sr) n
v : t (Atype sr) n

ScalarProd a v =
(SimpleReduction (asr_add sr) (asr_© sr) o SimplePointWise2
(asr_mul sr) a)
v

Proof progress:
e
unfold compose.

unfold SimplePointWise2.
unfold SimpleReduction.
unfold ScalarProd.
reflexivity.

e ——
The proof walkthrough (step 3/7)

Proof State:
1 subgoals, subgoal 1 (ID 17)

n : nat
a : t (Atype sr) n
v : t (Atype sr) n

ScalarProd a v =
SimpleReduction (asr_add sr) (asr_©0 sr)
(SimplePointWise2 (asr_mul sr) a v)

Proof progress:
L

e

unfold SimplePointWise2.

unfold SimpleReduction.
unfold ScalarProd.
reflexivity.

e ——
The proof walkthrough (step 4/7)

Proof State:
1 subgoals, subgoal 1 (ID 18)

n : nat
a : t (Atype sr) n
v : t (Atype sr) n

ScalarProd a v =
SimpleReduction (asr_add sr) (asr_© sr) (map2 (asr_mul sr) a v)

Proof progress:
e

e

peto— Sl elios gdhls ol
unfold SimpleReduction.
unfold ScalarProd.
reflexivity.

The proof walkthrough (step 5/7)

Proof State:

1 subgoals, subgoal 1 (ID 19)

n : nat
a : t (Atype sr) n
v : t (Atype sr) n

ScalarProd a v =
fold right (asr_add sr) (map2 (asr_mul sr) a v) (asr_© sr)

Proof progress:

SPIRAL
www.spiral.net

e
e

fold SimplePointhWicad.
spefo—d Senmlelbeodpcetion
unfold ScalarProd.
reflexivity.

The proof walkthrough (step 6/7)

Proof State:

1 subgoals, subgoal 1 (ID 20)

n : nat
a : t (Atype sr) n
v : t (Atype sr) n

fold right (asr_add sr) (map2 (asr_mul sr) a v) (asr_© sr) =
fold right (asr_add sr) (map2 (asr_mul sr) a v) (asr_© sr)

Proof progress:

e
e

fold SimplePointhWicad.
o feo apleoc
reflexivity.

The proof walkthrough (step 7/7)

Proof State:

Proof progress:

——
Coq — Code Extraction (Haskell example)

map2 :: (al -> a2 -> a3) -> Nat -> (T al) -> (T a2) > T a3
map2 g n vl v2 = case vl of {
Nil -> case v2 of {
Nil -> Nil;
Cons h n0O t -> unsafeCoerce (_ -> Prelude.error "absurd case")};
Cons hl n0 t1 -> case v2 of {
Nil -> Prelude.error "absurd case";
Cons h2 nl t2 -> Cons (g hl h2) nl (map2 g nl t1 t2)}}

fold_right :: (al -> a2 -> a2) -> Nat -> (T al) -> a2 -> a2
fold_right £f n v b = case v of {

Nil -> b;

Cons a n0 w -> f a (fold_right f n0 w b)}

scalarProd :: Nat -> (T Asring) -> (T Asring) -> Asring
scalarProd n a b =
fold_right (asr_add realring) n (map2 (asr_mul realring) n a b)
(asr_0 realring)

1 ——— |
Scalar Product Breakdown Rule in Isabelle

lemma rule_ScalarProd :

fixes v::"'val::{comm_ring 1} list"
fixes a::"'val::{comm_ring 1} list"
assumes

aa:"a#[]" and wvv:"v#[]" and lav: "length a = length v"
shows "ScalarProd a v = (Reduction (op +) @ o PointWise (length a) (A x i . x*(nth a i)))

v
proof -

have 1: "ScalarProd a v = [foldl (op +) @ (map (%(x,y). x*y) (zip a v))]" by (simp add:
iprod_def foldl listsum)

have rl:"hd ((Reduction (op +) © o PointWise (length a) (A x i . x*(nth a i))) v) =
foldl op + @ (zipwithe (Ax i. x * a ! i) v (natrange (length a)))" by simp
have "(zipwithe (Ax i. x * a ! i) v (natrange (length a))) = map (%(x,y). (Ax i. x * a !
i) x y) (zip v (natrange (length a)))"
using lav zipwith® map by (metis natrange_len)
also have "... = map (%(x,y). x*y) (zip v (map (nth a) (natrange (length a))))"
by (metis dnr lav natrange_map all)
finally have "(zipwithe (Ax i. x * a ! i) v (natrange (length a))) = map (%(x,y). x*y)
(zip v a)" by (metis natrange_map_all)
hence "(Reduction (op +) @ o PointWise (length a) (A x i . x*(nth a i))) v =
[foldl op + @ (map (%(x,y). x*y) (zip v a))]" using single element_list rl by simp
thus ?thesis using 1 lav map_mul_comm by fastforce
ged

Summary: Isabelle (vs. Coq)

Pros:

s Powerful automatic solving methods

s Based on widely understood mainstream HOL
= Rich library of mathematical theories

Cons:
m Less transparent decision strategies
= No dependent types

s Does not readily produce evidence trial (does not
satisfy “de Bruijn criterion”)

Summary: Coq (vs. Isabelle)

Pros:

m Supports dependent types

s Powerful type system

m Fine-grained, easy to understand tactics

m Produces evidence trial (does satisfy “de Bruijn
criterion”)

Cons:

m Based on lesser know Calculus of Inductive
Computations

m [he system perhaps better intuitively understood by
Computer Scientists than by Mathematicians

Proving Transformations

Coq

Operator
Definitions

Code
Extraction

Next Steps: Proving Code Generation

Slides above were dealing with Axiomatic proofs of the HCOL

operator language transformation.

Next steps to prove:

= HCOL > j-Code transformation

I-Code > i-Code
i-Code > “C” code generation
“C” code > machine code compilation

Related:

Operational Semantics
CompCert “C” compiler
CLite language

The Semantics of x86 Multiprocessor Programs (x86-TSO,
x86-CC)
A Formal Model of /IEEE Floating Point Arithmetic

Further Reading

Y. Bertot, P. Casteran. “Coqg’Art: Interactive theorem
proving and program development.”
Springer Verlag, 2004.

T. Nipkow, L. Paulson, M. Wenzel. “Isabelle/HOL: a proof
assistant for higher-order logic.” Springer, 2002

/4

A. Chlipala. “Certified programming with dependent types’
The MIT Press, 2013

F. Baader and T. Nipkow, “Term Rewriting and All That”,
Cambridge University Press, 1998.

